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Abstract. We investigate a class of nonlocal conservation laws with the non-
linear advection coupling both local and nonlocal mechanism, which arises in

several applications such as the collective motion of cells and traffic flows. It

is proved that the C1 solution regularity of this class of conservation laws will
persist at least for a short time. This persistency may continue as long as

the solution gradient remains bounded. Based on this result, we further iden-

tify sub-thresholds for finite time shock formation in traffic flow models with
Arrhenius look-ahead dynamics.

1. Introduction. In this work we investigate a class of nonlocal conservation laws,{
∂tu+ ∂xF (u, ū) = 0, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R, (1)

where u is the unknown, F is a given smooth function, and ū is given by

ū(t, x) = (K ∗ u)(t, x) =

∫
R
K(x− y)u(t, y) dy, (2)

where K is assumed in W 1,1(R). The advection couples both local and nonlocal
mechanism. This class of conservation laws appears in several applications including
traffic flows [11, 25], the collective motion of biological cells [6, 2, 21], dispersive
water waves [27, 9, 5, 14], the radiating gas motion [8, 23, 19], high-frequency waves
in relaxing medium [10, 20, 26], and the kinematic sedimentation [12, 28, 1].

We are interested in the persistence of the C1 solution regularity for (1). As
is known that the typical well-posedness result asserts that either a solution of
a time-dependent PDE exists for all time or else there is a finite time such that
some norm of the solution becomes unbounded as the life span is approached. The
natural question is whether there is a critical threshold for the initial data such
that the persistence of the C1 solution regularity depends only on crossing such a
critical threshold. This concept of critical threshold and associated methodology
is originated and developed in a series of papers by Engelberg, Liu and Tadmor
[7, 16, 17] for a class of Euler-Poisson equations.

In this paper we attempt to study such a critical phenomena in (1). C1 solution
regularity is shown to persist at least for finite time. Moreover, such persistency
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may continue as long as the solution gradient remains bounded. We also identify
sub-thresholds for finite time shock formation in some special traffic flow models,
as well as (1) with one sided interaction kernels. These together partially confirm
the critical threshold phenomenon in non-local conservation laws (1).

The traffic flow model that motivated this study is the one with looking ahead
relaxation introduced by Sopasakis and Katsoulakis [25]:{

∂tu+ ∂x(u(1− u)e−K∗u) = 0, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R, (3)

where u(t, x) represents a vehicle density normalized in the interval [0, 1] and the
relaxation kernel

K(r) =

{
K0

γ , if −γ ≤ r ≤ 0,

0, otherwise,
(4)

is the constant interaction potential, where γ is a positive constant proportional to
the look-ahead distance and K0 is a positive interaction strength. We set K0 = 1
since in our study this parameter is not essential.

An improved interaction potential for (3) is introduced in [11] with

K(r) =

{
2
γ

(
1 + r

γ

)
, −γ ≤ r ≤ 0,

0, otherwise.
(5)

This linear potential is intended to take into account the fact that a car’s speed is
affected more by nearby vehicles than distant ones. The authors in [11] carried out
some careful numerical study of the traffic flow model (3), through three examples:
red light traffic, traffic jam on a busy freeway and a numerical breakdown study.
In the case of a good visibility (large γ), their numerical studies suggest that (3)
with the modified potential (5) yields solutions that seem to better correspond to
reality.

The objective of this article is therefore twofold : i) to establish local wellposed-
ness of smooth solutions for (1); ii) to identify threshold conditions for the finite
time shock formation of the traffic flow model (3) subject to two different potentials
(4) and (5), respectively. The finite time shock formation of solutions in traffic flows
are understood as congestion formation.

We use X to denote a space X(R) for X = H2(= W 2,2) or W 1,1, where W k,p

denotes a standard Sobolev space. The main results are collectively stated as fol-
lows.

Theorem 1.1. (Local existence) Suppose F ∈ C3(R,R) and K ∈ W 1,1. If
u0 ∈ L∞ and u0x ∈ H1, then there exists T > 0, depending on the data, such that
(1) admits a unique solution u ∈ C1([0, T ) × R). Moreover, if the maximum life
span T ∗ <∞, then

lim
t→T∗−

‖∂xu(t, ·)‖L∞ =∞.

Theorem 1.2. Consider (3) with constant potential (4). Suppose that u0 ∈ H2

and 0 ≤ u0(x) ≤ 1 for all x ∈ R. If

sup
x∈R

[u′0(x)] >
1

γ

(
1

2
+

√
2

4
·
√

3−min
{
− 1, γ · inf

x∈R
[u′0(x)]

})
, (6)

then ux must blow up at some finite time.
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Theorem 1.3. Consider (3) with linear potential (5). Suppose that u0 ∈ H2 and
0 ≤ u0(x) ≤ 1 for all x ∈ R. If

sup
x∈R

[u′0(x)] >
1

γ

(
1 +

1

2
·
√

6−min
{
− 2, γ · inf

x∈R
[u′0(x)]

})
, (7)

then ux must blow up at some finite time.

Regarding these results several remarks are in order.
i) Our threshold results in Theorems 1.2 and 1.3 are valid for any 0 < γ < ∞.

When the look-ahead distance γ → ∞, both threshold conditions are reduced to
supx∈R[u′0(x)] > 0. On the other hand, when γ → ∞, model (3) is reduced to the
classical Lightwill-Whitham-Richards(LWR) model [18, 22],

∂tu+ ∂x(u(1− u)) = 0.

This local model can be verified to have finite time shock formation if initial data has
positive slope u′0 > 0 at some point. Therefore, the threshold conditions identified
are consistent with that of the LWR model.

ii) In a recent work [13] D. Li and T. Li present several finite time shock formation
scenarios of solutions to (3) with (4). Their approach is to analyze the solutions
along two characteristic lines defined by 0 = u(t,X1(t)) and 1 = u(t,X2(t)), with
which they justified that if there exist two points α1 < α2, such that u0(α1) = 0
and u0(α2) = 1, then ux must blow up at some finite time. Compare to their
result, our shock formation conditions in Theorems 1.2 and 1.3 may be viewed in
the perspective of critical thresholds.

iii) The shock formation conditions in Theorem 1.2 and 1.3 are consistent with
the numerical results obtained in [11]. Indeed, a numerical comparison in [11] of
solutions to (3) with (4) for γ = 0.1 and γ = 1 indicates that the solution with
γ = 0.1 remains smooth, when the solution with γ = 1 seems to contain a shock
discontinuity.

iv) The threshold in (7) is bigger than that in (6). This observation suggests that
under certain initial configuration, the traffic flow model with constant interaction
potential may develop a congestion formation, while the model with the linear
interaction potential may not. Roughly speaking, it is understood that the drivers
with the linear potential are ‘smarter’ than the drivers with the constant potential.

v) For fixed γ > 0, both (6) and (7) reflect some balance between supx∈R[u′0(x)]
and infx∈R[u′0(x)] for the finite time shock formation: if the non-positive term
infx∈R[u′0(x)] is relatively small, then supx∈R[u′0(x)] needs to be large for the finite
time shock formation. It indicates that not only the car density behind the traffic
jam but also the car density ahead of the traffic jam contribute to the formation of
congestion.

We now summarize the main arguments in our proofs to follow. For the proof of
Theorem 1.1, we explore the classical energy method for hyperbolic problems, see
e.g., [4]. Here we apply the Banach fixed-point theorem to the transformation S
defined through v = S(u), where v is solved from{

∂tv + Fuvx + Fūūx = 0,
v(t = 0) = u0.

(8)

We show that there exists T > 0 depending on initial data such that the mapping
v = S(u) exists and is a contraction. In so showing, detailed estimates of non-local
terms are crucial, and allow us to track the dependence of T on the initial data.
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For the proofs of Theorem 1.2-1.3, we trace the Lagrangian dynamics of d := ux,
which can be obtained from the Eulerian formulation:

(∂t+(1−2u)e−ū∂x)d = e−ū
[
2d2 +2(1−2u)ūxd−u(1−u){ūx}2 +u(1−u)ūxx

]
. (9)

The right hand side is quadratic in d, the a priori bound 0 ≤ u ≤ 1 ensures
the boundedness of both u and ūx involved in the coefficients. The key in our
approach is to bound the non-local term ūxx in terms of M(t) = supx∈R[ux(x, t)]
and N(t) = infx∈R[ux(x, t)] attained at x = ξ(t) and x = η(t), respectively. This
way we are able to obtain weakly coupled differential inequalities for both M and
N , which yield the desired sub-thresholds.

This non-standard approach of tracing the dynamics of d along two different
curves originates in an idea of Seliger [24] proving wave breaking for the Whitham
equation. To carry out Seliger’s formal analysis, one needs to assume that the
curves ξ(t) and η(t) are smooth. This additional strong assumption was shown
unnecessary later by Constantin and Escher [3]. In this work we are able to adapt
these arguments to a class of nonlocal conservation laws (1).

From the proofs of Theorem 1.2-1.3 we observe that the one-sided interaction
property of kernels (4) and (5) is crucial. Hence our threshold analysis for the
traffic flow models is applicable to the class of nonlocal conservation laws (1) under
the following assumptions:
(H1). F ∈ C3(R,R), and the kernel K(r) ∈W 1,1 satisfying

K(r) =

{
Nondecreasing, r ≤ 0,
0, r > 0.

(H2). F (0, ·) = F (m, ·) = 0 and

Fuu < 0, Fūū > 0, Fū < 0 for u ∈ [0,m].

The result can be stated as follows.

Theorem 1.4. Consider (1) with (2) under assumptions (H1)-(H2). If u0 ∈ H2

and 0 ≤ u0(x) ≤ m for all x ∈ R, then there exists a non-increasing function λ(·)
such that if

sup
x∈R

[u′0(x)] > λ( inf
x∈R

[u′0(x)]),

then ux must blow up at some finite time.

We should point out that it was the threshold analysis for traffic flow models that
led us to the thresholds (6), (7) in the first place, which in turn was then extended
to the general class (1) as summarized in Theorem 1.4.

We now conclude this section by outlining the rest of the paper. In section 2, we
prove local wellposedness for the class of nonlocal conservation laws (1). In section
3, we investigate sub-thresholds for nonlocal traffic flow models. We finally sketch
the proof of Theorem 1.4 in the end of this paper.

2. Local wellposedness and regularity. In this section, we study the local well-
posedness of (1). We consider a solution space as u ∈ u0(x) + BT , with BT :=
L∞([0, T ];H2

x), which allows u to be non-zero at far field. By transformation

U = u− u0,

we find the following equation for U ∈ BT ,

Ut + ∂xF (U + u0, Ū + ū0) = 0.
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This lies in the same class as (1). With this in mind, from now on, we shall consider

u ∈ BT := L∞([0, T ];H2
x).

We prove the local wellposedness result by the fixed point argument. That is, we
first define a transformation S as v = S(u), where v is solved from the following
equation {

∂tv + Fuvx + Fūūx = 0,
v(t = 0) = u0,

(10)

and then show this mapping has a fixed point.
We begin by verifying the existence of v = S(u), which is carried out in a series

of Lemmata 2.1-2.3. For simplicity, we take

a = Fu and b = −Fūūx.
We bound a and b in terms of u in the following lemma.

Lemma 2.1. Suppose u ∈ BT , K ∈W 1,1. Then

‖ax‖H1 ≤ (k(1 + ‖K‖L1))2(1 + ‖ux‖∞)‖u‖H2 (11)

and
‖b‖H2 ≤ k(1 + ‖K‖L1)3(1 + ‖Kx‖L1)(1 + ‖ux‖∞)2‖u‖H2 , (12)

where k = k(F ) is a constant depending on F . In particular, if supt∈[0,T ] ‖u‖H2 ≤
R, then

sup
t∈[0,T ]

‖ax‖H1 < caR
2 and sup

t∈[0,T ]

‖b‖H2 < cbR
3,

where ca = k(1 + c1)(1 + ‖K‖L1)2, cb = k(1 + c1)2(1 + ‖K‖W 1,1)4 and c1 is an
embedding constant.

Proof. We begin with some key inequalities for ū: using ‖w ∗K‖L2 ≤ ‖K‖L1‖w‖L2

and K ∈W 1,1 we obtain

‖ūx‖L2 = ‖K ∗ ux‖L2 ≤ ‖K‖L1‖ux‖L2 ,

‖ūxx‖L2 = ‖K ∗ uxx‖L2 ≤ ‖K‖L1‖uxx‖L2 ,

‖ūxxx‖L2 = ‖Kx ∗ uxx‖L2 ≤ ‖Kx‖L1‖uxx‖L2

(13)

and
‖ūx‖∞ ≤ ‖ux‖∞‖K‖L1 .

We calculate
ax = Fuuux + Fuūūx,

axx = Fuuuu
2
x + Fuuūuxūx + Fuuuxx + Fuūuuxūx + Fuūūū

2
x + Fuūūxx,

so that

‖ax‖L2 ≤ k‖ux‖L2 + k‖K‖L1‖ux‖L2

≤ k(1 + ‖K‖L1)‖u‖H2 .

‖axx‖L2 ≤ k
(
‖ux‖∞‖ux‖L2 + ‖ux‖∞‖K‖L1‖ux‖L2 + ‖uxx‖L2

+ ‖ux‖∞‖K‖L1‖ux‖L2 + ‖ux‖∞‖K‖2L1‖ux‖L2 + ‖K‖L1‖uxx‖L2

)
≤ k(1 + ‖ux‖∞)(1 + ‖K‖L1)2‖u‖H2 .

(14)

These together lead to (11).
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We also calculate,

bx = −Fūuuxūx − Fūūū2
x − Fūūxx,

bxx = −Fūuuu2
xūx − Fūuūuxū2

x − Fūuuxūx − Fūuuxūxx
− Fūūuuxū2

x − Fūūūū3
x − 2Fūūūxūxx

− Fūuuxūxx − Fūūūxūxx − Fūūxxx,

to obtain

‖b‖L2 ≤ k‖K‖L1‖ux‖L2 .

‖bx‖L2 ≤ k‖ux‖∞‖K‖L1‖ux‖L2 + k‖ux‖∞‖K‖2L1‖ux‖L2 + k‖K‖L1‖uxx‖L2

≤ k
(

(1 + ‖ux‖∞)(1 + ‖K‖L1)2

)
‖u‖H2 .

‖bxx‖L2 ≤ k
(
‖ux‖2∞‖K‖L1 + ‖ux‖2∞‖K‖2L1 + ‖ux‖∞‖K‖L1 + ‖ux‖‖K‖L1

)
‖u‖H2

+ k

(
‖ux‖2∞‖K‖2L1 + ‖ux‖2∞‖K‖3L1 + 2‖ux‖∞‖K‖2L1

)
‖u‖H2

+ k

(
‖ux‖∞‖K‖L1 + ‖ux‖∞‖K‖2L1 + ‖Kx‖L1

)
‖u‖H2 .

These estimates give (12).

Lemma 2.2 (A priori estimates). Suppose u ∈ BT . A sufficiently smooth solution
v of (10) must satisfy the energy estimates

sup
t∈[0,T ]

‖v(·, t)‖L2 ≤
(
‖u0‖L2 + T · sup

t∈[0,T ]

‖b‖L2

)
exp

(
1

2

∫ T

0

‖ax‖∞dτ
)
, (15)

sup
t∈[0,T ]

‖v(·, t)‖H2 ≤
(
‖u0‖H2 + T · sup

t∈[0,T ]

‖b‖H2

)
exp

((3

2
+ c1

) ∫ T

0

‖ax‖H1 dτ

)
,

(16)

where c1 is an embedding constant.

Proof. Apply ∂lx to the first equation of (10) to obtain,

(∂lxv)t + a · (∂lxv)x = hl, (17)

where hl = ∂lxb− ∂lx(avx) + a(∂lxv)x. Multiplying (17) by ∂lxv and integrating over
R, we obtain,

1

2

d

dt

∫
R

(∂lxv)2 dx =

∫
R
ax

(∂lxv)2

2
+

∫
R
hl · (∂lxv) dx. (18)

This with l = 0 leads to

d

dt
‖v‖2L2 =

∫
axv

2dx+ 2

∫
bvdx ≤ ‖ax‖∞‖v‖2L2 + 2‖b‖L2‖v‖L2 .

That is
d

dt
‖v‖L2 ≤ 1

2
‖ax‖∞‖v‖L2 + ‖b‖L2 ,
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which upon integration gives (15). Next, summing (18) for l = 0, 1, 2, we obtain

1

2

d

dt
‖v‖2H2 =

1

2

∫
R
ax ·

2∑
l=0

(∂lxv)2 dx+

∫
R

2∑
l=0

hl · (∂lxv) dx

=
1

2

∫
R
ax(v2 − v2

x − 3v2
xx) dx−

∫
R
axxvxvxx dx

+

∫
R

(bv + bxvx + bxx)vxx dx

≤ 3

2
‖ax‖∞‖v‖2H2 + ‖vx‖∞‖axx‖L2‖vxx‖L2 + ‖b‖H2‖v‖H2

≤
(

3

2
+ c1

)
‖ax‖H1‖v‖2H2 + ‖b‖H2‖v‖H2 .

(19)

Therefore, we obtain

d

dt
‖v‖H2 ≤

(
3

2
+ c1

)
‖ax‖H1‖v‖H2 + ‖b‖H2 ,

which upon integration again gives (16).

Lemma 2.3. Suppose the initial data v(x, 0) = u0 ∈ H2. Then for each u ∈ BT ,
there exists a unique solution v ∈ BT of (10).

Proof. Since supt∈[0,T ] ‖ax‖H1
x
<∞,

dx

dt
= a, x(0) = x0

admits a unique solution x = x(x0, t) for each x0 ∈ R. Along x(x0, t), (10) reduces
to

dv

dt
= b, v(0) = u0(x0).

Hence v(x(x0, t), t) = u0(x0) +
∫ t

0
b(x(x0, τ), τ) dτ and the unique solution for (10)

exists.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let R be any number satisfying R ≥ 2‖u0‖H2 , we define

BTR :=

{
ω ∈ L∞([0, T ];H2) |ω(x, 0) ≡ u0, sup

t∈[0,T ]

‖ω(·, t)‖H2 ≤ R
}
. (20)

Assume that u ∈ BTR, we then have

‖u(t)‖∞ ≤ c0R, ‖ux(t)‖∞ ≤ c1R, 0 ≤ t ≤ T,
where c0 and c1 are the embedding constants.

We first show that S maps BTR into BTR for some T small. From (16), it follows
that

sup
t∈[0,T ]

‖v(·, t)‖H2 ≤
(
R

2
+ T · cbR3

)
exp

(
T ·
(3

2
+ c1

)
caR

2

)
≤ R,

(21)

provided

T ≤ T1 :=
1

3(2 + c1)(ca + cb)eR2
.
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Hence,

S : BTR → BTR, ∀T ≤ T1.

We next show that S is a contraction on BTR in the L∞([0, T ];L2
x) norm:

sup
t∈[0,T ]

‖S(u1)− S(u2)‖L2 ≤ 1

2
· sup
t∈[0,T ]

‖u1 − u2‖L2 , ∀u1, u2 ∈ BTR. (22)

Let ṽ := v1− v2 = S(u1)−S(u2), then difference of (10) for v2 and v1, respectively,
leads to

ṽt + a(u1)ṽx = b̃, ṽ(0, x) = 0 (23)

with

b̃ =: −{a(u1)− a(u2)}v2x + b(u1)− b(u2). (24)

Applying (15) we have

sup
t∈[0,T ]

‖ṽ‖L2 ≤ T · sup
t∈[0,T ]

‖b̃(·, t)‖L2 exp

(
1

2

∫ T

0

‖∂xa(u1)‖∞ dτ

)
. (25)

In order to find a time interval such that the contraction property (22) holds, we

need to estimate ‖∂xa(u1)‖∞ and ‖b̃(·, t)‖L2 .
First we have

‖∂xa(u1)‖∞ = ‖Fuuu1x + Fuūū1x‖∞
≤ k

(
‖u1x‖∞ + ‖ū1x‖∞

)
≤ k

(
c1R+ c1R‖K‖L1

)
=: C1R.

(26)

The first term in (24) is bounded as

‖{a(u1)− a(u2)}v2x‖L2 ≤ C1R‖u1 − u2‖L2 . (27)

This can be seen from the following calculation:

‖{a(u1)− a(u2)}v2x‖L2 = ‖{Fu(u1, ū1)− Fu(u2, ū2)}v2x‖L2

≤ ‖{Fu(u1, ū1)− Fu(u2, ū1)}v2x‖L2

+ ‖{Fu(u2, ū1)− Fu(u2, ū2)}v2x‖L2

≤ c1Rk
(
‖u1 − u2‖L2 + ‖ū1 − ū2‖L2

)
≤ kc1R(1 + ‖K‖L1)‖u1 − u2‖L2 .

If we assume Fū(0, ·) = 0, then the last term in (24) has a similar bound:

‖b(u1)− b(u2)‖L2 ≤ C2R‖ũ‖L2 . (28)

To obtain this bound, we decompose it the following way

b(u1)− b(u2) = −Fū(u1, ū1){ū1x − ū2x} − ū2x{Fū(u1, ū1)− Fū(u2, ū1)}
− ū2x{Fū(u2, ū1)− Fū(u2, ū2)}.

If we assume Fū(0, ·) = 0, we have Fū(u1, ū1) = Fūu(ξ, ū1)u1,

‖Fū(u1, ū1){ū1x − ū2x}‖L2 ≤ k‖u1{ū1x − ū2x}‖L2



THRESHOLDS FOR SHOCK FORMATION IN TRAFFIC FLOW MODELS 331

≤ kc0R‖ū1x − ū2x‖L2

≤ kc0R‖Kx‖L1‖u1 − u2‖L2 .

Applying the mean value property to the remaining terms gives that

‖b(u1)− b(u2)‖L2 ≤ k{c0‖Kx‖L1 + c1‖K‖L1 + c1‖K‖2L1}R‖u1 − u2‖L2 .

Substituting (26), (27) and (28) into (25), we obtain

sup
t∈[0,T ]

‖ṽ‖L2 ≤ (C1 + C2)R · TeC1R·T sup
t∈[0,T ]

‖u1 − u2‖L2 , (29)

which ensures (22) if T ≤ T2 with

T2 =
1

2e · (C1 + C2)R
.

Therefore, for 0 < T < T ∗ with

T ∗ = min{T1, T2} =
1

CR2
min{1, R},

the map S is a contraction on BTR in L∞([0, T ];L2
x) norm and thus possesses a

unique fixed point u which is the unique solution of (1).
Note that without assuming Fū(0, ·) = 0, a different bound than (28) is obtained

‖b(u1)− b(u2)‖L2 ≤ (C4 + C3R)‖ũ‖L2 ,

hence T2 satisfying

T2 <
1

2e{(C1 + C2)R+ C4}
still ensures the contraction. This ends the existence proof. �

We prove the second part of Theorem 1.1 through the following corollary:

Corollary 1. Let u be the solution obtained in Theorem 1.1 with a maximum life
span [0, T ). Then

‖u(t, ·)‖H2 ≤ ‖u0‖H2 exp

(
k(1+c1)(1+‖K‖W 1,1)4

∫ t

0

(1+‖ux‖∞)2 dτ

)
, 0 ≤ t < T

(30)
where c1 is the embedding constant. This infers that only one of the following occurs
i) T =∞ and u is a global solution;
ii) 0 < T <∞ and

lim
t→T−

‖∂xu(t, ·)‖L∞ =∞.

Proof. We use again the estimate in (19), setting v ≡ u,

d

dt
‖u‖H2 ≤ 3

2
‖ax‖∞‖u‖H2 + ‖ux‖∞‖axx‖L2 + ‖b‖H2 .

From ax = Fuuux +Fuūūx, it follows that ‖ax‖∞ ≤ k(1 + ‖K‖L1)‖ux‖∞. Together
with the estimates of ‖axx‖L2 and ‖b‖H2 in (14) and (12), respectively, we obtain

d

dt
‖u‖H2 ≤ k(1 + c1)(1 + ‖ux‖∞)2(1 + ‖K‖L1)3(1 + ‖Kx‖L1)‖u‖H2 .

Upon integration, we obtain (30). The claim in ii) follows from a contradiction
argument: If limt→T− ‖ux‖∞ < ∞, it would lead to the boundedness of ‖u‖H2 .

One may therefore extend the solution for some T̃ > T , which contradicts the
assumption that T <∞ is a maximal existence interval.
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3. Sub-thresholds for finite time shock formation.

3.1. Proof of Theorem 1.2. In this subsection, we consider the traffic flow model
with Arrhenius look-ahead dynamics:{

∂tu+ ∂x(u(1− u)e−ū) = 0,
u(0, x) = u0(x),

(31)

where ū(t, x) = 1
γ

∫ x+γ

x
u(t, y) dy. Here γ > 0 denotes look-ahead distance. In the

theory of traffic flow, u(t, x) represents a vehicle density normalized in the interval
[0, 1].

We want identify some threshold condition for the shock formation of solutions
to (31). From Corollary 1 we know that it suffices to track the dynamics of ux. The
idea is based on tracing M(t) := supx∈R[ux(x, t)] and N(t) := infx∈R[ux(x, t)]. The
existence and differentiability (in almost everywhere sense) of M(t) and N(t) are
proved in [3], which we summarize in the following.

Lemma 3.1. (Theorem 2.1 in [3]) Let T > 0 and u ∈ C1([0, T ];H2). Then for
every t ∈ [0, T ] there exists at least one point η(t) ∈ R with

N(t) := inf
x∈R

[ux(t, x)] = ux(t, η(t)),

and the function N is almost everywhere differentiable on (0, T ) with

dN

dt
(t) = utx(t, η(t)) a.e. on (0, T ).

We also state a useful result, which is proved in [15].

Lemma 3.2. (Lemma 3.1. in [15]) Consider the following differential equation for
A(t)

dA

dt
= a(t)(A− b1(t))(A− b2(t)), A(0) = A0, (32)

with a(t) > 0, b1(t) ≤ b2(t) and that a(t), b1(t), b2(t) are uniformly bounded.
i) If A0 > max b2, then A(t) will experience a finite time blow-up.
ii) If there exists a constant b̄ such that

b1(t) ≤ b̄ ≤ b2(t),

then (32) admits a unique global bounded solution satisfying

min{A0,min b1} ≤ A(t) ≤ b̄,

provided A0 ≤ b̄.

With Lemma 3.2 we obtain the following:

Lemma 3.3. Consider the following differential inequality,

dB

dt
≥ a(t)(B − b1(t))(B − b2(t)), B(0) = B0, (33)

with a(t) > 0, b1(t) ≤ b2(t) and that a(t), b1(t), b2(t) are uniformly bounded.
i) If B0 > max b2, then B(t) will experience a finite time blow-up.
ii) min{B0,min b1} ≤ B(t), for t ≥ 0 as long as B(t) remains finite on the time
interval [0, t].
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Proof. i) Subtracting (32) from (33) gives

d

dt
(B −A) ≥ a(t)(B −A)(B +A− b1 − b2).

Integration leads to

(B −A)(t) ≥ (B0 −A0) exp

(∫ t

0

a(t)(B +A− b1 − b2) dτ

)
. (34)

Therefore, B0 ≥ A0 implies B(t) ≥ A(t). For any B0 > max b2 set A0 = B0, then
by Lemma 3.2, A0 will lead to a finite time blow-up of A(t). Hence, by (34), B(t)
will experience a finite time blow-up.
ii) Consider (32), it is easy to see that min{A0,min b1} ≤ A(t). Then (34) gives
the result.

We remark that Lemma 3.3 remains valid even if (33) holds almost everywhere.
We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. Let d := ux and apply ∂t to the first equation of (31),

ḋ := (∂t + (1− 2u)e−ū∂x)d

= e−ū
[
2d2 + 2(1− 2u)ūxd− u(1− u){ūx}2 + u(1− u)ūxx

]
.

(35)

Define for t ∈ [0, T ),

M(t) := sup
x∈R

[ux(t, x)] = d(t, ξ(t)),

N(t) := inf
x∈R

[ux(t, x)] = d(t, η(t)).
(36)

Then, along (t, ξ(t)), we have

ūxx =
1

γ
{ux(ξ + γ)− ux(ξ)} ≥ 1

γ
(−M +N),

and (35) can be written as,

Ṁ = e−ū
(

2M2 + 2(1− 2u)ūxM − u(1− u){ūx}2 + u(1− u)ūxx

)
a.e.

≥ e−ū
(

2M2 + 2(1− 2u)ūxM − u(1− u){ūx}2 + u(1− u)
(−M +N)

γ

)
.

(37)

And along (t, η(t)), we have

ūxx =
1

γ
{ux(η + γ)− ux(η)} ≥ 0,

and (35) can be written as,

Ṅ = e−ū
(

2N2 + 2(1− 2u)ūxN − u(1− u){ūx}2 + u(1− u)ūxx

)
a.e.

≥ e−ū
(

2N2 + 2(1− 2u)ūxN − u(1− u){ūx}2
)
.

(38)

(38) can be written as

Ṅ ≥ 2e−ū(N −N1)(N −N2) a.e. , (39)

where

N1(u, ūx) =
−(1− 2u)ūx −

√
{(1− 2u)ūx}2 + 2u(1− u)ū2

x

2
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and

N2(u, ūx) =
−(1− 2u)ūx +

√
{(1− 2u)ūx}2 + 2u(1− u)ū2

x

2
.

We note that N1 ≤ 0 ≤ N2 because 0 ≤ u(t) ≤ 1. It can be shown later that N1 is
uniformly bounded from below,

N1 ≥ −
1

γ
. (40)

Applying Lemma 3.3 (ii) to (39) with min0≤u≤1, |ω|≤ 1
γ
N1(u, ω) = − 1

γ , we obtain

N(t) ≥ min

{
− 1

γ
, N(0)

}
=:

Ñ0

γ
.

Substituting this lower bound into (37), we obtain

Ṁ ≥ e−ū
(

2M2 +

{
2(1− 2u)ūx −

u(1− u)

γ

}
M − u(1− u)ū2

x +
u(1− u)Ñ0

γ2

)
a.e.

Rewriting of this inequality gives

Ṁ ≥ 2e−ū(M −M1)(M −M2) a.e. , (41)

where M2(≥M1) is given by

M2 :

=
−{2(1− 2u)ūx − u(1−u)

γ
}+

√
{2(1− 2u)ūx − u(1−u)

γ
}2 + 8u(1− u)ū2

x − 8u(1−u)Ñ0

γ2

4
.

We claim that M2 has an uniform upper bound,

M2 ≤
1

γ

[
1

2
+

√
2

4
·
√

3− Ñ0

]
. (42)

By Lemma 3.3 (i), if

M(0) >
1

γ

[
1

2
+

√
2

4
·
√

3− Ñ0

]
,

then M(t) will blow up a finite time. This is exactly the threshold condition as
stated in Theorem 1.2.

To complete our proof we still need to verify both claims (42) and (40).
To verify (42), we set

v := γ · ūx = u(x+ γ)− u(x).

From 0 ≤ u(t) ≤ 1 it follows that −1 ≤ v ≤ 1. If suffices to find upper bound for
M2 over the set

Ω := {(u, v) ∈ R2 | 0 ≤ u ≤ 1, −1 ≤ v ≤ 1}.
In fact,

M2 =
−{2(1− 2u)v − u(1− u)}+

√
{2(1− 2u)v − u(1− u)}2 + 8u(1− u)(v2 − Ñ0)

4γ

≤ 1

4γ

[
2 +

√
4 + 2(1− Ñ0)

]
.

Here, we use max(u,v)∈Ω{−2(1− 2u)v + u(1− u)} = 2 which can be verified easily
since the underlying function is linear in v and quadratic in u. For the next one,
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max(u,v)∈Ω{8u(1 − u)(v2 − Ñ0)} = 2(1 − Ñ0) is used, which is obtained from the
upper bound u(1− u) ≤ 1/4.

Finally, we are left with the verification of (40). With v defined above, we have

Q := γN1 =
−(1− 2u)v −

√
{(1− 2u)v}2 + 2u(1− u)v2

2
.

By rearranging,

Q2 =
u(1− u)v2

2
−Q · (1− 2u)v

≤ u(1− u)v2

2
+ εQ2 +

(1− 2u)2

4ε
v2, 0 < ε < 1.

(43)

It follows that

(1− ε)Q2 ≤ v2

4ε
{(1− 2u)2 + 2εu(1− u)}

≤ 1

4ε
,

(44)

where the maximum value is achieved at ∂Ω. This gives

Q2 ≤ 1

4ε(1− ε)
.

Since ε is arbitrary, we choose ε = 1
2 to get Q2 ≤ 1, hence Q ≥ −1, which gives

(40). �

3.2. Proof of Theorem 1.3. We rewrite the traffic flow model (3) with the linear
potential as

∂tu+ ∂x(u(1− u)e−ũ) = 0, (45)

where

ũ(t, x) =
2

γ

∫ x+γ

x

(
1 +

x− y
γ

)
u(t, y) dy. (46)

Let d := ux and apply ∂x to (45),

ḋ = (∂t + (1− 2u)e−ũ∂x)d

= e−ũ
[
2d2 + 2(1− 2u)ũxd− u(1− u){ũx}2 + u(1− u)ũxx

]
.

(47)

Here,

ũx = − 2

γ

{
u(x)− 1

γ

∫ x+γ

x

u(y) dy

}
= − 2

γ
(u− ū),

ũxx = − 2

γ
(ux − ūx),

(48)

where ū = 1
γ

∫ x+γ

x
u(y) dy as defined in the previous section. Define for t ∈ [0, T ),

M(t) := sup
x∈R

[ux(t, x)] = d(t, ξ(t)),

N(t) := inf
x∈R

[ux(t, x)] = d(t, η(t)).
(49)
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The existence of ξ(t) and η(t) is justified by Theorem 2.1 in [3]. Then, along (t, ξ(t)),
(47) can be written as,

Ṁ = e−ũ
(

2M2 + 2(1− 2u)ũxM − u(1− u){ũx}2 + u(1− u)ũxx

)
a.e.

≥ e−ū
(

2M2 + 2(1− 2u)ũxM − u(1− u){ũx}2 + u(1− u)
2(N −M)

γ

)
,

(50)

where the last inequality follows from the fact that

ũxx(t, ξ) =
2

γ
(ūx −M) ≥ 2

γ
(N −M).

And along (t, η(t)), (47) can be written as,

Ṅ = e−ũ
(

2N2 + 2(1− 2u)ũxN − u(1− u){ũx}2 + u(1− u)ũxx

)
a.e.

≥ e−ũ
(

2N2 + 2(1− 2u)ũxN − u(1− u){ũx}2
)
,

(51)

where the last inequality follows from the fact that ũxx(t, η) = 2
γ (ūx−N) ≥ 0. (51)

can be written as

Ṅ ≥ 2e−ũ(N −N1)(N −N2) a.e. , (52)

where

N1 =
−(1− 2u)ũx −

√
{(1− 2u)ũx}2 + 2u(1− u)ũ2

x

2
and

N2 =
−(1− 2u)ũx +

√
{(1− 2u)ũx}2 + 2u(1− u)ũ2

x

2
.

We note that N1 ≤ 0 ≤ N2 because 0 ≤ u(t) ≤ 1.
By using the fact that 0 ≤ u ≤ 1, and −2 ≤ γũx ≤ 2, it can be shown that N1

is uniformly bounded from below,

N1 ≥ −
2

γ
.

The verification of this inequality is similar to the one in the proof (40), details are
omitted. With the lower bound of N1(t), Lemma 3.3 (ii) when applied to (52) gives

N(t) ≥ min

{
− 2

γ
, N(0)

}
=:

Ñ0

γ
. (53)

Substituting this lower bound into (50), we obtain

Ṁ ≥ e−ũ
[
2M2 +

{
2(1− 2u)ũx −

2u(1− u)

γ

}
M − u(1− u)ũ2

x +
2u(1− u)Ñ0

γ2

]
= 2e−ũ(M −M1)(M −M2) a.e.

(54)

In order to apply Lemma 3.3 (i) to (54), we proceed to find the upper bound of
M2(≥ M1). Let v := γ · ũx = −2(u − ū), then from the fact that 0 ≤ u, ū ≤ 1, we
know that −2 ≤ v ≤ 2. We also let

Ω := {(u, v) ∈ R2 | 0 ≤ u ≤ 1, −2 ≤ v ≤ 2}
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then M2 and it’s upper bound are given by

M2 =
−{2(1− 2u)v − 2u(1− u)}+

√
{2(1− 2u)v − 2u(1− u)}2 + 8u(1− u)(v2 − 2Ñ0)

4γ

≤ 1

4γ

[
4 +

√
16 + 2(4− 2Ñ0)

]
.

(55)

Here, we use max(u,v)∈Ω{−2(1− 2u)v + u(1− u)} = 4 which can be verified easily
since the underlying function is linear in v and quadratic in u. We also use u(1−u) ≤
1
4 in bounding the term 8u(1− u)(v2 − 2Ñ0). Therefore, by Lemma 3.3 (i), if

M(0) >
1

γ

[
1 +

1

2
·
√

6− Ñ0

]
,

then M(t) experience a finite time blow up. Hence we obtain the desired result.

3.3. Proof of Theorem 1.4. We only sketch the proof since it is entirely similar
to that in the previous section. Let d := ux and apply ∂x to the first equation of
(1) to obtain

(∂t + Fu · ∂x)d = −Fuud2 − 2Fuūūxd− Fūūū2
x − Fūūxx. (56)

It can be shown that 0 ≤ u ≤ m, and therefore

|ū| ≤ m‖K‖W 1,1 , |ūx| ≤ m‖K‖W 1,1 .

To find the bound of ūxx, we define for t ∈ [0, T ),

M(t) := sup
x∈R

[ux(t, x)] = d(t, ξ(t)),

N(t) := inf
x∈R

[ux(t, x)] = d(t, η(t)).
(57)

From (2), it follows that

ūxx(t, x) =

∫ 0

−∞
K ′(z)ux(t, x− z) dz −K(0)ux(t, x).

Therefore, along ξ(t),

K(0)(N −M) ≤ ūxx ≤ 0,

and (56) is reduced to

Ṁ ≥ −FuuM2 − 2FuūūxM − Fūūū2
x − FūK(0)(N −M) a.e. . (58)

Also, along η(t),

0 ≤ ūxx ≤ K(0)(M −N).

and (56) is reduced to

Ṅ ≥ −FuuN2 − 2FuūūxN − Fūūū2
x = −Fuu(N −N1)(N −N2) a.e. , (59)

where

N1(u, ūx) =
Fuūūx −

√
(F 2
uū − FuuFūū) ū2

x

−Fuu
.

From (59) we infer the lower bound of N(t) as

N(t) ≥ min{N(0), min
0≤u≤m,|v|≤m‖K‖W1,1

N1(u, v)} =: Ñ0,



338 YONGKI LEE AND HAILIANG LIU

Substituting this lower bound into (58), we obtain

Ṁ ≥ −FuuM2 − 2FuūūxM − Fūūū2
x − FūK(0)(Ñ0 −M)

= −Fuu(M −M1)(M −M2) a.e.,

where
M2(u, ūx)

=
2Fuūūx − FūK(0) +

√
{2Fuūūx − FūK(0)}2 − 4{FuuFūūū2

x + FuuFūK(0)Ñ0}
−2Fuu

.

Therefore, by Lemma 3.3 (i), if

M(0) > max
0≤u≤m,|v|≤m‖K‖W1,1

M2(u, v) =: λ(N(0)),

then M(t) will blow up in finite time. Hence we obtain the desired result.

REFERENCES

[1] F. Betancourt, R. Burger, K. H. Karlsen and E. M. Tory, On nonlocal conservation laws

modelling sedimentation, Nonlinearity., 24 (2011), 855–885.
[2] M. Burger, Y. Dolak and C. Schmeiser, Asymptotic analysis of an advection-dominated

chemotaxis model in multiple spatial dimensions, Commun. Math. Sci., 6 (2008), 1–28.

[3] A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,
Acta Math., 181 (1998), 229–243.

[4] C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, 2005.

[5] A. Degasperis and M. Procesi, Asymptotic integrability, in Symmetry and Perturbation The-
ory (Rome, 1998), World Scientific, River Edge, NJ, 1999, 23–37.

[6] Y. Dolak and C. Schmeiser, The Keller-Segel model with logistic sensitivity function and

small diffusivity, SIAM J. Appl. Math., 66 (2005), 286–308.
[7] S. Engelberg, H. Liu and E. Tadmor, Critical Thresholds in Euler-Poisson equations, Indiana

Univ. Math. J., 50 (2001), 109–157.

[8] K. Hamer, Non-linear effects on the propagation of sound waves in a radiating gas, Quart. J.
Mech. Appl. Math., 24 (1971), 155–168.

[9] D. D. Holm and A. N. W. Hone, A class of equations with peakon and pulson solutions (with
a appendix by Braden H and Byatt-Smith), J. Nonlinear Math. Phys, 12 (2005), 380–394.

[10] J. K. Hunter, Numerical solutions of some nonlinear dispersive wave equations, Lect. Appl.

Math, 26 (1990), 301–316.
[11] A. Kurganov and A. Polizzi, Non-oscillatory central schemes for traffic flow models with

Arrhenius look-ahead dynamics, Netw. Heterog. Media., 4 (2009), 431–451.
[12] G. Kynch, A theory of sedimentation, Trans. Fraday Soc., 48 (1952), 166–176.
[13] D. Li and T. Li, Shock formation in a traffic flow model with Arrhenius look-ahead dynamics,

Netw. Heterog. Media, 6 (2001), 681–694.

[14] H. Liu, Wave breaking in a class of nonlocal dispersive wave equations, Journal of Nonlinear
Math Phys., 13 (2006), 441–466.

[15] T. Li and H. Liu, Critical thresholds in hyperbolic relaxation systems, J. Differential Equa-
tions, 247 (2009), 33–48.

[16] H. Liu and E. Tadmor, Spectral dynamics of the velocity gradient field in restricted flows,

Comm. Math. Phys., 228 (2002), 435–466.
[17] H. Liu and E. Tadmor, Critical thresholds in 2D restricted Euler-Poisson equations, SIAM J.

Appl. Math., 63 (2003), 1889–1910.

[18] M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long
crowded roads, Proc. Roy. Soc., London, Ser. A, 229 (1955), 317–345.

[19] H. L. Liu and E. Tadmor, Critical Thresholds in a convolution model for nonlinear conserva-

tion laws, SIAM J. Math. Anal. 33 (2001), 930–945.
[20] E. J. Parkes and V. O. Vakhneko, The calculation of multi-soliton solutions of the Vakhnenko

equation by the inverse scattering method, Chaos Solitons Fractals., 13 (2002), 1819–1826.

[21] B. Perthame and A. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model,
Trans. Amer. Math. Soc., 361 (2009), 2319–2335.

[22] P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42–51.

http://www.ams.org/mathscinet-getitem?mr=MR2772627&return=pdf
http://dx.doi.org/10.1088/0951-7715/24/3/008
http://dx.doi.org/10.1088/0951-7715/24/3/008
http://www.ams.org/mathscinet-getitem?mr=MR2397995&return=pdf
http://dx.doi.org/10.4310/CMS.2008.v6.n1.a1
http://dx.doi.org/10.4310/CMS.2008.v6.n1.a1
http://www.ams.org/mathscinet-getitem?mr=MR1668586&return=pdf
http://dx.doi.org/10.1007/BF02392586
http://www.ams.org/mathscinet-getitem?mr=MR2169977&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1844104&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2179753&return=pdf
http://dx.doi.org/10.1137/040612841
http://dx.doi.org/10.1137/040612841
http://www.ams.org/mathscinet-getitem?mr=MR1855666&return=pdf
http://dx.doi.org/10.1512/iumj.2001.50.2177
http://dx.doi.org/10.1093/qjmam/24.2.155
http://www.ams.org/mathscinet-getitem?mr=MR2117993&return=pdf
http://dx.doi.org/10.2991/jnmp.2005.12.s1.31
http://dx.doi.org/10.2991/jnmp.2005.12.s1.31
http://www.ams.org/mathscinet-getitem?mr=MR1066289&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2525215&return=pdf
http://dx.doi.org/10.3934/nhm.2009.4.431
http://dx.doi.org/10.3934/nhm.2009.4.431
http://dx.doi.org/10.1039/tf9524800166
http://www.ams.org/mathscinet-getitem?mr=MR2860409&return=pdf
http://dx.doi.org/10.3934/nhm.2011.6.681
http://www.ams.org/mathscinet-getitem?mr=MR2249812&return=pdf
http://dx.doi.org/10.2991/jnmp.2006.13.3.8
http://www.ams.org/mathscinet-getitem?mr=MR2510127&return=pdf
http://dx.doi.org/10.1016/j.jde.2009.03.032
http://www.ams.org/mathscinet-getitem?mr=MR1918784&return=pdf
http://dx.doi.org/10.1007/s002200200667
http://www.ams.org/mathscinet-getitem?mr=MR2030849&return=pdf
http://dx.doi.org/10.1137/S0036139902416986
http://www.ams.org/mathscinet-getitem?mr=MR0072606&return=pdf
http://dx.doi.org/10.1098/rspa.1955.0089
http://dx.doi.org/10.1098/rspa.1955.0089
http://www.ams.org/mathscinet-getitem?mr=MR1885290&return=pdf
http://dx.doi.org/10.1137/S0036141001386908
http://dx.doi.org/10.1137/S0036141001386908
http://www.ams.org/mathscinet-getitem?mr=MR1882982&return=pdf
http://dx.doi.org/10.1016/S0960-0779(01)00200-4
http://dx.doi.org/10.1016/S0960-0779(01)00200-4
http://www.ams.org/mathscinet-getitem?mr=MR2471920&return=pdf
http://dx.doi.org/10.1090/S0002-9947-08-04656-4
http://www.ams.org/mathscinet-getitem?mr=MR0075522&return=pdf
http://dx.doi.org/10.1287/opre.4.1.42


THRESHOLDS FOR SHOCK FORMATION IN TRAFFIC FLOW MODELS 339

[23] P. Rosenau, Extending hydrodynamics via the regularization of the Chapman–Enskog expan-
sion, Phys. Rev. A, 40 (1989), 7193–7196.

[24] R. Seliger, A note on the breaking of waves, Proc. Roy. Soc. Ser. A, 303 (1968), 493–496.

[25] A. Sopasakis and M. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asym-
metric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math.,

66 (2006), 921–944.
[26] V. O. Vakhnenko, Solitons in a nonlinear model medium, J. Phys., 25 (1992), 4181–4187.

[27] G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics, Wiley-

Interscience, New York-London-Sydney, 1974.
[28] K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions, Q. Appl. Math,

57 (1999), 573–600.

Received January 2014; revised February 2014.

E-mail address: yklee@iastate.edu

E-mail address: hliu@iastate.edu

http://www.ams.org/mathscinet-getitem?mr=MR1031939&return=pdf
http://dx.doi.org/10.1103/PhysRevA.40.7193
http://dx.doi.org/10.1103/PhysRevA.40.7193
http://dx.doi.org/10.1098/rspa.1968.0063
http://www.ams.org/mathscinet-getitem?mr=MR2216726&return=pdf
http://dx.doi.org/10.1137/040617790
http://dx.doi.org/10.1137/040617790
http://www.ams.org/mathscinet-getitem?mr=MR1177553&return=pdf
http://dx.doi.org/10.1088/0305-4470/25/15/025
http://www.ams.org/mathscinet-getitem?mr=MR0483954&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1704419&return=pdf
mailto:yklee@iastate.edu
mailto:hliu@iastate.edu

	1. Introduction
	2. Local wellposedness and regularity
	3. Sub-thresholds for finite time shock formation
	3.1. Proof of Theorem 1.2
	3.2. Proof of Theorem 1.3
	3.3. Proof of Theorem 1.4

	REFERENCES

